Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites

نویسندگان

  • Patricia Cheung
  • Aditya Bhan
  • Glenn J. Sunley
  • David J. Law
  • Enrique Iglesia
چکیده

Steady-state, transient, and isotopic-exchange studies of dimethyl ether (DME) carbonylation, combined with adsorption and desorption studies of probe molecules and infrared (IR) spectroscopy, were used to identify methyl and acetyl groups as surface intermediates within specific elementary steps involved in the synthesis of methyl acetate from DME–CO mixtures with >99% selectivity on H-zeolites. Carbonylation rates increased linearly with CO pressures but did not depend on DME pressures, suggesting that the addition of CO to CH3 groups present at saturation coverage controls catalytic carbonylation rates. These reactions lead to acetyl groups that subsequently react with DME to form methyl acetate (423–463 K; >99% selectivity) and regenerate methyl intermediates, consistent with kinetic studies of CO reactions with CH3 groups previously formed from DME and with kinetic and IR studies of DME reactions with acetyl groups formed by stoichiometric reactions of acetic anhydride. These studies show that CO reacts with DME-derived intermediates bound on zeolitic Al sites from the gas phase or via weakly held CO species adsorbed non-competitively with CH3 groups. These reactions, in contrast with similar reactions of methanol, occur under anhydrous conditions and avoid the formation of water, which strongly inhibits carbonylation reactions. © 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A link between reactivity and local structure in acid catalysis on zeolites.

The extent to which spatial constraints influence rates and pathways in catalysis depends on the structure of intermediates, transition states, and active sites involved. We aim to answer, as we seek insights into catalytic mechanisms and site requirements, persistent questions about the potential for controlling rates and selectivities by rational design of spatial constraints around active si...

متن کامل

Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls.

The acid-catalyzed formation of carbon-carbon bonds from C1 precursors via CO insertion into chemisorbed methyl groups occurs selectively within eight-membered ring (8-MR) zeolite channels. This elementary step controls catalytic carbonylation rates of dimethyl ether (DME) to methyl acetate. The number of O-H groups within 8-MR channels was measured by rigorous deconvolution of the infrared ban...

متن کامل

Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon–Carbon Bond Formation upon Dimethyl Ether Activation on Alumina

The methanol-to-olefin (MTO) process allows the conversion of methanol/dimethyl ether into olefins on acidic zeolites via the so-called hydrocarbon pool mechanism. However, the site and mechanism of formation of the first carbon-carbon bond are still a matter of debate. Here, we show that the Lewis acidic Al sites on the 110 facet of γ-Al2O3 can readily activate dimethyl ether to yield CH4, alk...

متن کامل

Catalytic Co-Homologation of Alkanes and Dimethyl Ether and Promotion by Adamantane as a Hydride Transfer Co-Catalyst

Competitive reactions between C-labeled dimethyl ether (C-DME) and unlabeled alkenes have been used to examine the mechanistic details of chain growth and termination pathways leading to the selective formation of triptane and isobutane by means of the homologation of DME or methanol (Scheme 1). These studies have also provided specific and quantitative evidence for the ubiquitous role of carbe...

متن کامل

An investigation into the mechanism and kinetics of dimethoxymethane carbonylation over FAU and MFI zeolites

In situ IR spectroscopy was used to observe the intermediates formed on zeolites FAU and MFI during the synthesis of methyl methoxyacetate (MMAc) via carbonylation of dimethoxymethane (DMM) and the disproportionation of DMM to dimethyl ether (DME) and methyl formate (MF). Both reactions are initiated by the reaction of DMM with the Brønsted acid protons of the zeolite to form methanol and metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006